
Journal of Computational Physics 207 (2005) 151–172

www.elsevier.com/locate/jcp
Parallel computation of unsteady incompressible viscous
flows around moving rigid bodies using an immersed

object method with overlapping grids

C.H. Tai a,b, Y. Zhao a,*, K.M. Liew a,b

a School of Mechanical and Production Engineering, Nanyang Technological University, Nanyang Avenue,

Singapore 639798, Republic of Singapore
b Nanyang Centre for Supercomputing and Visualisation, Nanyang Technological University, Nanyang Avenue,

Singapore 639798, Republic of Singapore

Received 11 February 2004; received in revised form 12 January 2005; accepted 13 January 2005

Available online 3 March 2005
Abstract

A novel immersed object method is developed for simulating two-dimensional unsteady incompressible viscous flows

around arbitrarily moving rigid bodies. It has been implemented in a parallel unstructured finite volume incompressible

Navier–Stokes solver, based on the artificial compressibility (AC) approach using a higher-order characteristics-based

upwind scheme and matrix-free implicit dual time-stepping. In the immersed object method, an object is immersed in

the flow field, and it is supposed to contain frozen fluid, which moves like a solid body. This is realized by introducing

source terms in the momentum equations during the AC sub-iterations. An internal mesh within the object is employed

to search and locate all the Eulerian nodes within the object in every time step for imposing the source terms. Unlike

many existing methods, this method does not require complex searching, extrapolation and interpolation to find the

intersections of the object boundary with the unstructured background mesh and assign flow condition onto the object

boundary. If it is necessary to capture the boundary layer accurately, then a dense overlapping grid can then be con-

structed around the object for further refined calculation. The immersed object method has been used to simulate steady

and unsteady incompressible viscous flows over a stationary circular cylinder, rotating square cylinder and moving disk

in cavity. The results agree well with published numerical solutions and experimental measurements.

� 2005 Elsevier Inc. All rights reserved.

Keywords: Immersed object method; Overlapping grids; Characteristics-based method; Matrix-free implicit method; Parallel comp-

utation; Unstructured grid; Unsteady incompressible viscous flow
0021-9991/$ - see front matter � 2005 Elsevier Inc. All rights reserved.

doi:10.1016/j.jcp.2005.01.011

* Corresponding author. Tel.: +65 6790 4545.

E-mail address: myzhao@ntu.edu.sg (Y. Zhao).

mailto:myzhao@ntu.edu.sg

152 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
1. Introduction

The simulation of fluid flow with arbitrarily moving solid bodies is one of the challenges in computa-

tional fluid dynamics (CFD). The development of accurate, robust and efficient methods that can tackle

this problem would be very useful for many practical applications. There are a few existing methods de-
signed for this purpose. One approach that has been demonstrated to be effective is the immersed boundary

method [1], which was originally developed for the simulation of blood flow in the human heart. In this

method, a fixed or Eulerian mesh is used and the moving bodies (muscular heart walls and valves) are

approximated by a series of control points on which tension forces are imposed pointwise and distributed

in the neighbouring elements. Here, these forces are not known a priori and are calculated using theoretical

models. It should be noted that the original method is suitable for calculating the moving boundary as one-

dimensional curves (i.e., the thickness is negligible), and one cannot include the inertia effect and jumps in

flow properties cross the boundary. The immersed boundary method has since been extended to a number
of problems, for examples, flows over a circular cylinder [2], motion of flexible pulp fibres [3], and modelling

arteriolar flow and mass transport [4]. In the extended method, the object boundary has to be well defined

and its intersections with the mesh have to be calculated in every time step. In addition, elaborate interpo-

lation is used to impose interfacial conditions directly onto the object boundary or a source term is distrib-

uted to its neighbouring nodes to achieve these conditions. Goldstein et al. [5,6] formulated a technique

related to the immersed boundary method to introduce solid surfaces into a simulated flow field. This tech-

nique is known as virtual boundary method. In the simulation of no-slip boundary condition using this

method [5], the embedded boundary in the fluid is to be treated by applying a force field to the fluid
and this force is chosen to lie along a desired surface and to have a magnitude and direction opposing

the local flow such that the flow is brought to rest on an element of the surface. Since the force field is

not known initially, it is calculated based on a feedback-forcing scheme so that the velocity on the bound-

ary is used to determine the desired force distribution. This method needs to specify two large negative

constants, a and b, so that the imposed fluid velocity is close to the interface velocity. It is noted that this

method may introduce spurious oscillations and restricts the physical time step size. Saiki and Biringen [7]

have applied this virtual boundary method to compute a two-dimensional flow around stationary and mov-

ing cylinders. Tseng and Ferziger [8] also extended the immersed boundary method to achieve higher-order
extrapolation/interpolation for the interfacial boundary condition for complex geometries by employing the

ghost fluid method [9,10]. The combination resulted in the so-called ghost-cell immersed boundary method,

which was then applied to study flow past a circular cylinder and large eddy simulation of turbulent flows.

Glowinski et al. [11,12] proposed a fictitious domain method for the numerical solutions of three-

dimensional elliptic problems with Dirichlet boundary conditions for modelling incompressible viscous

flow. The method combines finite element approximations, time discretization by operator splitting

and Lagrangian multiplier for imposing the interfacial velocity condition. The advantage of this method

is that it uses Eulerian mesh, therefore allowing the use of existing fast solvers. Elaborate interpolation
is also needed to calculate the boundary condition based on the Lagrangian multiplier, and iteration as

well as a feedback mechanism is required to achieve the interfacial condition. This method has been

employed to simulate Stokes flow past moving rigid bodies [11], steady external three-dimensional

Stokes flow and vortex shedding behind a cylinder in two-dimensional unsteady incompressible viscous

flow [12].

The overlapping grid method has been one popular hybrid Eulerian/Lagrangian technique in CFD,

allowing flows with arbitrarily shaped object geometries to be computed. Among them the Chimera mesh

method [13] can deal with large-displacement problems by using two sets of meshes, one is used to cover the
local area surrounding the objects and the other is a background mesh which covers the rest of the flow

field. Flow field variables must be interpolated back and forth between these two sets of overlapping

meshes. The Chimera method is difficult to implement in computer codes, as the method requires cutting

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 153
holes in the background mesh before superimposing the overlapping mesh into the flow field and building

the overlapping region in every time step.

This work attempts to develop a so-called immersed object method for simulating unsteady incompress-

ible viscous flows around moving rigid bodies. It is assumed that fluid within an object is frozen and moves

like a solid body. This condition is enforced by adding source terms to the momentum equations for those
Eulerian nodes lying inside the object. This is different from the direct forcing method [14] in that the direct

forcing method is very much like the immersed boundary method and requires object–mesh intersection

calculation, extrapolation and interpolation to impose boundary condition onto object surfaces. The Eule-

rian nodes inside the object can be efficiently searched and identified by using an internal mesh within the

object based on a quatree search in every time step. Unlike the existing methods as surveyed above, this

method does not require any calculation to determine object–mesh intersections, which can be very com-

plicated for 2D/3D surfaces and unstructured meshes. In addition, no interpolation or extrapolation of flow

properties for imposing interfacial conditions is needed. For high Reynolds-number flow, where its bound-
ary layer is thin and has to be accurately captured, an overlapping mesh, that surrounds the object, can be

added and the Eulerian solution can be transferred to the boundary of the overlapping mesh to perform

further calculation to obtain refined solution, as well as accurate lift and drag coefficients. Compared with

the Chimera method, this approach is relatively simpler to implement in computer codes because no hole-

cutting is required in the Eulerian mesh, and this is especially advantageous when the solid body is moving

arbitrarily or when there are multiple moving objects. A parallel strategy has also been developed to par-

allelize the method. The proposed immersed object method has been applied to simulate viscous flow over a

stationary circular cylinder at both low and high Reynolds numbers, rotating square cylinder and moving
circular disk in order to demonstrate and examine the performance, accuracy and robustness of the

method.
2. Mathematical formulation

The non-dimensional Navier–Stokes equations in two-dimensions for incompressible unsteady flows and

moving grid, modified by the artificial compressibility (AC) method, in vector form:
C
oW

os
þ K

oW

ot
þr �~Fc ¼ r~Fv; ð2:1Þ
where
W¼
p

u

v

2
64
3
75; ~Fc ¼

U

uUþðp=qÞ~i
vUþðp=qÞ~j

2
64

3
75; ~Fv ¼

0
1

Re
ou
ox
~iþ ou

oy
~j

� �
1

Re
ov
ox
~iþ ov

oy
~j

� �
2
664

3
775; K¼

0 0 0

0 1 0

0 0 1

2
64

3
75; C¼

1=b 0 0

0 1 0

0 0 1

2
64

3
75; ð2:2Þ
where W is the flow field variable vector, U = Uf � Ug is the velocity vector, Uf and Ug are the fluid velocity
and grid velocity respectively, and ~Fc and ~Fv are the convective and viscous flux vectors, respectively, b
being a constant called AC, K is the unit matrix, except that the first element is zero and C is a precondi-

tioning matrix.

The non-dimensional variables used in above equations are defined as follows:
ðx; yÞ ¼ x�

L� ;
y�

L�

� �
; ðu; vÞ ¼ u�

U �
1
;

v�

U �
1

� �
; t ¼ t�

L�=U �
1
; p ¼ p� � p0

qðU �
1Þ

2
; Re ¼ q1U �

1L�

l�
1

:

154 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
3. Numerical methods

A high-order characteristics-based upwind finite-volume method on an unstructured grid [15] is used to

discretize the governing equations. The 2D equation in Eq. (2.1) is transformed into an integral form and

discretized on an unstructured grid. A cell-vertex scheme is adopted here. For every vertex, as shown in Fig.
1, a control volume is constructed using the median dual of the triangular grid. Spatial discretization is

performed by using the integral form of the conservation equations over the control volume surrounding

node P,
C
o

os

Z Z
Scv

Wp dS þ K
o

ot

Z Z
Scv

Wp dS þ
Z Z

Scv

r �~Fc dS ¼
Z Z

Scv

r �~Fv dS: ð3:1Þ
In order to introduce the upwind scheme using an edge-based procedure, the convective term is trans-

formed into a summation,
Z Z
Scv

r �~Fc dS ¼
I
Lcv

~Fc �~n dl ¼
Xnbseg
k¼1

~Fc

� �k

ij
�~nDlk

� �
; ð3:2Þ
where nbseg is the number of the edges connected to node P, ð~FcÞk
ij is the convection flux through the part of

control volume boundary (similar to 1–Cij–2 in Fig. 1). The length of the boundary is Dlk and its effective

outward normal unit vector is~n. Therefore, all the fluxes are calculated for the edges and then collected at

the two ends of each edge for updating of flow variables using the time-marching scheme. The viscous term
is calculated using a cell-based method,
Z Z

Scv

r �~Fv dS ¼
I
Lcv

~Fv � dl ¼
Xncell
i¼1

ð~Fv � D~lcÞi ¼
1

2

Xncell
i¼1

ð~Fv � D~lpÞi; ð3:3Þ
where D~lci is the part of control volume boundary in cell Ci, and D~lpi is the edge vector of the cell edge oppo-
site to node P of the triangle under consideration. Here, ð~FvÞi is calculated at the centre of the triangular

cell, and can be obtained by using the Green�s Theorem and the variables at the three vertices of the trian-

gle. Here, ncell is the number of cells surrounding node P. The viscous flux in Eq. (3.3) is actually calculated

in a cell-by-cell manner and then collected at the nodes of the cells for the calculation of the residuals at all

the nodes. The gradient of a flow variable U at the center of a cell is evaluated,
grad Uc ¼ � 1

2

P3

i¼1Ui
~li

A
; ð3:4Þ
2

1

Control Volume
(Shaded Region)

Cij

P

N1

N2

N3

N4

N5

Fig. 1. Construction of control volume for node P.

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 155
where Ui is the flow variable at a vertex i of the cell and~li is the edge vector opposite to vertex i, A is the area

of the triangular cell. Gradients at the vertices are obtained by a volume averaging of the gradients at the

center of cells associated with the vertex under consideration.

The solution of the Navier–Stokes equations on a moving mesh requires a new grid velocities at each

time step. In our work, a high-order characteristic-based scheme for incompressible flow for arbitrary
unstructured 2D/3D grids proposed by Zhao and Tai [15] has been adopted. Such a scheme automatically

introduces upwinding along the characteristic directions at both the differential equation and discretized-

equation levels, without relying on any artificial viscosity. Combined with the third-order MUSCL inter-

polation, it can produce accurate and stable solution on unstructured grids. The left and right state vectors

WL and WR on both sides of a control volume surface for the characteristics-based scheme are evaluated

using an upwind-biased MUSCL interpolation scheme:
WL ¼ Wi þ
1

2
½ð1� jÞ~ij � rWi þ jDþ

i �; ð3:5Þ

WR ¼ Wj �
1

2
½ð1� jÞ~ij � rWj þ jD�

j �; ð3:6Þ
where Dþ
i ¼ D�

j ¼ Wj �Wi, subscripts i and j represent indices for the two end nodes defining the edge, j is

set to 1/3, which corresponds to a third-order accuracy. ~ij is the vector representing the edge, which points

from node P to its neighbouring node under consideration. The gradients of W at i and j are calculated by
volume-averaging the gradients of the cells that surround i and j.

Finally, for a given node P, the spatially discretized equations form a system of coupled ordinary differ-

ential equations, which can be reformulated as
C
o

os
ðDScvWpÞ þ K

o

ot
ðDScvWpÞ ¼ �

Xnbseg
k¼1

½ð~FcÞk
ij �~nDlk� �

1

2

Xncell
i¼1

ð~Fv �~nDlP Þi

()
¼ �RðWP Þ; ð3:7Þ
where R(WP) represents the residual error which includes the convective and diffusive fluxes and DScv is the

control volume of node P. An implicit scheme is adopted for Eq. (3.7) and the time dependent term is

discretized using a second-order-accurate backward differencing scheme,
C
o

os
ðDScvWpÞ ¼ �RðWnþ1

p Þ � K
1:5DSnþ1

cv Wnþ1
p � 2:0DSn

cvW
n
p þ 0:5DSn�1

cv Wn�1
p

Dt

 !
¼ ~RðWnþ1

p Þ; ð3:8Þ
where the superscript (n + 1) denotes the physical time level (n + 1)Dt and all the variables are evaluated at

this time level, ~RðWnþ1
p Þ is the new modified residual which contains both the time derivative and flux

vectors. The derivative with respect to a pseudo time s is discretized as
CDSnþ1
cv

Wnþ1;mþ1
p �Wnþ1;m

p

ds
¼ ~RðWnþ1;m

p Þ; ð3:9Þ
whose solution is sought by marching to a pseudo steady state in s. Here, m and (m + 1) denote the initial

and final pseudo time levels. Once the artificial steady state is reached, the derivative ofWp with respect to s
becomes zero, and the solution satisfies ~RðWnþ1

p Þ ¼ 0. Hence, the original unsteady Navier–Stokes equa-

tions are fully recovered. Therefore, instead of solving each time step in the physical time domain (t),

the problem is transformed into a sequence of steady-state computations in the artificial time domain

(s). Eq. (3.9) is integrated in pseudo time by an explicit five-stage Runge–Kutta scheme. However, the pseu-

do time step size may be severely restricted if the physical time step size is very small. Hence, an implicit
dual time stepping is adopted here.

156 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
An approximate flux function is introduced here to simplify the implicit time stepping calculation. Fol-

lowing [16], the total flux (including both inviscid and viscous fluxes) across a control volume surface asso-

ciated with a certain edge ij can be approximated as
Fij �
1

2
~F

c

i �~nþ~F
c

j �~n� kij

�� �� Wi �Wj

� 	h i
;

where kij is the spectral radius associated with edge ij, is given as
kij ¼ ~U �~nij þ
ffi
~U �~nij

� �2
þ b2

r
:

A Taylor series expansion is performed for the residual in Eq. (3.9) with respect to the pseudo time for node

i,
~R Wmþ1
i

� 	
¼ ~R Wm

i

� 	
þ o~Ri

oWi
þ
Xm

j¼1

o~Ri

oWj
DWj:
And in all the R terms, the Taylor series expansions of the fluxes are,
oFij

oWi
¼ 1

2

oFc
ij

oWi
� kij

�� ��� �
and

oFij

oWj
¼ 1

2

oFc
ij

oWj
þ kij

�� ��� �
:

And for the physical time-dependent terms, we have
Wmþ1
i ¼ Wm

i þ DWi:
After combining all the residuals at every node in the flow field into a vector, we have
R Wnþ1;mþ1
� 	

¼ R Wnþ1;m
� 	

þ ADW;
where A ¼ oRi
oWj

n o
.

And the whole-field equivalent of Eq. (3.9) can then be re-written as
CDSnþ1
cv

Dt þ 1:5Ds
Dt

� ADs

DSnþ1
cv

 !
DW
Ds

¼ Rnþ1;m � K
1:5DSnþ1

cv Wnþ1;m � 2:0DSn
cvW

n þ 0:5DSn�1
cv Wn�1

Dt

� �
;

that is,
CDSnþ1
cv

~A
DW
Ds

¼ ~R
nþ1;m

; ð3:10Þ
thus,
CDSnþ1
cv

DW
Ds

¼ ~~R
n;mþ1

; ð3:11Þ
where
~~R
n;mþ1

¼ ~A
�1~R

nþ1;m
and ~A ¼ Dt þ 1:5Ds

Dt
� ADs
DScv

:

Therefore,
~R
nþ1;m ¼ Rnþ1;m � K

1:5DSnþ1
cv Wnþ1;m � 2:0DSn

cvW
n þ 0:5DSn�1

cv Wn�1

Dt

� �
:

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 157
Further approximation can be introduced in order to achieve matrix-free computation. If we employ point

implicit treatment to the preceding equations, then only the diagonal terms in ~A are used in the pseudo time

stepping. As a result, the equation for every node can now be written as
CDSnþ1
cvi

DWi

Ds
¼ ~~R

n;mþ1

i ; ð3:12Þ
where
~~R
n;mþ1

i ¼ ~A
�1

ii
~R

n;mþ1

i and ~A
�1

ii ¼ Dt þ 1:5Ds
Dt

� AiiDs
DScvi

� ��1

:

Pseudo time stepping is then performed on Eq. (3.12). For a five-stage scheme, the stage coefficients are
a1 ¼ 1=4; a2 ¼ 1=6; a3 ¼ 3=8; a4 ¼ 1=2; a5 ¼ 1:
4. Parallel implementation

This work adopts a parallelization strategy for the numerical simulations by using geometric domain
decomposition and the single program multiple data (SPMD) programming paradigm [17]. Here, data com-

munication between domains is based on the message-passing interface (MPI) [18]. Domain decomposition

of a mesh into a set S of sub-domains that may be allocated to a set of processors involves finding a par-

tition of the mesh so that equal amount of computational time on each processor is achieved. METIS [19] is

employed to produce the partitions of grids (see Fig. 2).

The nodes and elements that are allocated uniquely to a processor are referred to as core mesh compo-

nents in this work and each processor calculates the flow field variables and nodal gradients for them. Each

sub-domain is enclosed with a layer of ghost nodes and overlapping elements, which overlap the sub-
domains along the inter-processor boundaries as depicted in Figs. 3 and 8. These ghost nodes store flow

field variables and nodal gradients which are transferred from neighbouring sub-domains for the solution

of variables within the sub-domain. Therefore no computation is performed on the ghost nodes in the sub-

domain under consideration. Communication between these core and ghost nodes is based on the MPI. The

data flow direction is always from the core nodes to the ghost nodes.

The main concept of the algorithm to identify the ghost nodes and overlapping elements is that those

elements along the inter-processor boundaries with nodes having different partition numbers and they

are considered as overlapping elements which are cut through by the partition lines. And it should be noted
m
ξ

λ

W m+1

τ

RWk interfaceL

WL WR

k

Fig. 2. s–n co-ordinate.

Fig. 3. Mesh decomposed into 4 partitions showing each sub-domain extended with a layer of ghost nodes and overlapping elements.

158 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
that the nodes forming these elements are a mixture of core and ghost nodes [17]. Basically, the ghost node
of a partition is the mirror image of the core node of its neighbouring partitions. For example, as shown in

Fig. 3, the ghost node number 11 of partition 3 is the mirror image of core node number 10 of partition 1

Table 1

Communication between core and ghost nodes for partition 1 depicted in Fig. 3

Global node number Send Receive

Partition number Local node number (core node) Partition number Local node number (ghost node)

11 1 5 2 17

31 8 2 16

27 9 2 15

26 10 2 14

26 10 3 11

23 7 3 10

6 3 3 9

26 10 4 12

10 2 5 1 17

32 9 16

29 10 15

24 3 8 13

22 7 12

7 3 11

28 4 8 14

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 159
and vice-versa. Therefore, making use of this correlation between the core and ghost nodes, the rest of the

ghost nodes can be identified so as to build the control volume for the core node.

The communication between the core and ghost nodes requires a data structure for each sub-domain,

which holds the nodes and processor numbers to be sent to and received from. The mesh in each sub-

domain is renumbered as a new mesh consisting of ne elements and np nodes, where ne and np are the local

numbers of elements and nodes, respectively. In this work, communication and writing of variables to files
are based on local numbering rather than global numbering and therefore, no translation back from local

to global numbering is necessary. With reference to the grid decomposed in Fig. 3, the data structure estab-

lished for communication between the core and ghost nodes is shown in Table 1 and it only shows the data

structure for partition one and the data structure for the rest of the partitions will follow exactly the same

fashion.
5. The immersed object method

The immersed object method adds source terms to the momentum equations for nodes inside solid

objects in the flow field to force the fluid inside the objects to behave like solid ones. The advantage of this

is that bodies of almost arbitrary shapes can be added without grid restructuring, a procedure which is of-

ten time-consuming and computationally expensive. Furthermore, multiple bodies may be simulated, and

relative motion of those bodies may be accomplished at reasonable computational cost. The immersed ob-

ject method developed in this study does not require specifying any boundary conditions to the stationary

or moving object and thus no object–mesh intersection calculation and no elaborate interpolation at the
interface are needed in each time step. And the source terms are only used in the AC sub-iterations and

they will disappear when solid body motion is achieved.

A source term F is introduced into the momentum equations for the nodes inside an object such that a

desired velocity distribution Vo can be imposed within the object,
oU

ot
þU � rU ¼ �rp

q
þ l � r2 �Uþ F ð5:1Þ

160 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
and the continuity equation remains unchanged,
r �U ¼ 0: ð5:2Þ
In principle, there are no restrictions for the object velocity distribution Vo and for the shape and motion of
X; therefore a wide variety of boundary conditions can be imposed. The main advantage of this approach is

that F can be prescribed on a regular mesh so that accuracy and efficiency of the solution procedure on

simple grids can be maintained. Since no interpolation or extrapolation is required to impose the interfacial

condition, the order of accuracy of the method remains the same as the baseline finite volume scheme.

The time-discretized equation with the introduction of the pseudo-time s of Eq. (5.1) can be written as
DV cv Umþ1 �Um
� 	

Ds
¼ ~~R

m
þ Fm: ð5:3Þ
In order to drive the velocity Um+1 to the desired value Vo, within every physical time step, a number of
subiteration is performed on the discrete Navier–Stokes equation (5.3) using a five-stage Runge–Kutta

scheme:
Umþ1 ¼ Um þ am
Ds
DV cv

~~R þ F
� �m

; ð5:4Þ
where ~~R is defined in Eq. (3.12) for the matrix-free implicit dual time-stepping computation. am is the stage

coefficients for the five-stage Runge–Kutta scheme. At the end of the subiteration, the original Navier–

Stokes equations are recovered:
~~R ¼ 0:
To force the fluid velocity within the object to be the object velocity (i.e., Un+1 = Vo), the source term F is
given as follows,
Fm ¼ �~~R
m
þ 1

am

DV cv

Ds Vo �Umð Þ; on and within X;

0 elsewhere:

(
ð5:5Þ
It should be noted that the source term is only used in the AC sub-iterations and it becomes zero when the

solution becomes convergent.

In this work, we use two methods to define the physical boundary of the immersed object. The first meth-

od is to specify the geometric equation of the immersed object within the computational domain. The

second method is to generate an internal grid inside the object. For complex immersed objects, the latter

is found to be more robust and accurate than the former. The source term F of Eq. (5.5) is imposed on those

fluid nodes that fall on and within the immersed object. Fig. 4 shows a circular disk grid immersed into a

square cavity domain where it is used to classify those fluid nodes in the computational domain as solid
nodes. From the figure, it can be seen that the computational mesh that is covered by the immersed objects

needs to be refined so that the physical boundary can be defined as accurate as possible. The search algo-

rithm for fluid nodes that are covered by the immersed object is based on the concept of dot product of two

vectors: the unit normal vector oriented inward from an edge, ~n, and the vector ~p which points from the

centre of the edge to a node under consideration. The dot product of these two vectors, (pn)
nedg, for the three

edges,
ðpnÞ
nedg ¼ ~pf g: ~nf g ¼ pxpy

� �
:

nx

ny

 �
¼ pxnx þ pyny

� 	nedg P 0; nedg ¼ 1–3; ð5:6Þ
where the superscript nedg is the edge number of the cell. And (pn)
nedg must be positive for all the three edges

if the fluid node under consideration falls within the cell of the immersed object as depicted in Fig. 5 and

Fig. 4. Immersed object grid into computational domain.

(a) (b)

Fig. 5. (a) Fluid node falls within a immersed object cell using dot product; (b) fluid node does not fall within a immersed object cell.

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 161
this fluid node is classified as a solid node. To reduce searching time, a quadtree search method is employed.

Before the search, both the computational domain covered by the immersed object and the internal grid

inside the object are decomposed into a number of square zones, in which searching for a particular fluid

node is only done within the related square zones, instead of searching the entire flow field. For parallel

implementation, every processor has a copy of the internal object grid, as shown in Fig. 6, and a search
Fig. 6. Immersed object grid embedded in every processor.

162 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
for solid nodes (i.e., nodes inside the solid body) is done within its own processor using the search algorithm

described above. For moving body problems, the search algorithm is performed at the beginning of each

new time step once the immersed object has been moved to a new position and the speed of searching is

found to have significant impact on the overall performance.
6. Overlapping grid

There are three kinds of meshes being constructed in the immersed object method. The first mesh is the

Eulerian or background mesh which remains stationary throughout the computation. The second mesh is a

Largrangian or overlapping mesh which wrap around the object and moves with it. The third is the internal

grid inside the object, which is only used to define the boundary of the object to help identify nodes covered

by the object at any time instant. The overlapping grid, which does not need to cover the entire flow field, is
constructed with high mesh density near the object surface. This helps to fully resolve the physical bound-

ary and enables accurate resolution of the boundary layer. To determine the solution on the overlapping

grid, the solution on the background mesh is interpolated onto the overlapping grid as boundary conditions

and this requires some form of interpolation in a transfer operator. Before the interpolation of solution

takes place, it is necessary to determine the relative positional relations between the nodes and cells of

the overlapping mesh and their counterparts in the background mesh. The search algorithm developed

for identifying solid nodes covered by solid bodies is adopted here, as shown in Eq. (5.6) and Fig. 5.

For moving body problems, this search is performed at the beginning of very time step and its efficiency
also has significant impact on the overall performance of flow simulation and the search algorithm used

here is found to be quite efficient in this work. Following the interpolation algorithm developed for

multigrid in [17], the flow field variables on the background grid are interpolated onto the overlapping

boundary according to the following equation:
WOG ¼ ABG1WBG1 þ ABG2WBG2 þ ABG3WBG3

ABG1 þ ABG2 þ ABG3

; ð6:1Þ
whereWOG is the solution for the overlapping boundary node,WBG1,WBG2 andWBG3 are the solutions for

the background mesh. ABG1, ABG2 and ABG3 are the areas of the corresponding triangles opposite to the

background cell nodes. The flow field values at the overlapping boundary node, which is contained in

the background cell formed by nodes BG1, BG2 and BG3, is a weighted average of the values at those

nodes as shown in Fig. 7.
BG1

BG3

BG2ABG1

ABG3

ABG2

OG

Fig. 7. Transfer of flow field values from the background mesh to the overlapping grid.

Fig. 8. Mesh partitions and communications between background and overlapping grids.

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 163
For parallel computation, the overlapping grid is decomposed into a number of sub-domains for differ-

ent processors, which are independent of the computation for the background mesh. For example, as

shown in Fig. 8, the background and overlapping grids are decomposed into four and two sub-domains,

respectively. The sub-domains of the background mesh are distributed to processors 1, 2, 3 and 4, whereas

the sub-domains of the overlapping grid are distributed to processors 5 and 6. From the figure, it can be

seen that the overlapping grid for processor 5 overlaps with those for processors 1, 2, 3 and 4, and com-

munications will take place between these processors. Likewise for the overlapping grid for processor 6,
communications will take place between processor 6 and processors 1, 2 and 4. The parallel computation

on the overlapping grid is exactly the same as that employed for the background mesh, except that inter-

polation is needed at the beginning of each new time step.
7. Initial and boundary conditions

At the solid wall, a no-slip condition is imposed for viscous flow by setting the flow velocity equal to that
of the body. For the Eulerian mesh, an uniform velocity profile is given as free stream boundary condition,

while the velocity at down stream boundary is calculated. Pressure at the free stream is calculated and pres-

sure at the down stream boundary is fixed at a constant value. The flow field values are set to the

free-stream values at the start of the computation.
8. Computational results

To demonstrate and examine the performance, accuracy and robustness of the immersed object method

with overlapping grids, several test cases are computed. The test cases are viscous flow over a stationary

164 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
circular cylinder at both low and high Reynolds numbers, flow over a rotating square cylinder, as well as

flow in a cavity with a disk undergoing both rotation and translation. Parallel computations are performed

on an SGI Origin 3400 machine with 32 processors based on Silicon Graphics Scalable Distributed-Shared-

Memory (DSM) Multi-processing architecture. It has 8 nodes and each node has four MIPs 64 Bit R12000

400 MHz/8 MB RISC CPUs.
8.1. Viscous flow over a stationary circular cylinder

The first test case considered is viscous flow over a stationary circular cylinder at Reynolds numbers (Re)

of 41 and 200. The third-order characteristics-based scheme is used in the computations together with the

matrix-free implicit dual-time stepping scheme and the second-order temporal discretization. Since the

cylinder is stationary, fluid velocity within the cylinder is set to an object velocity, Vo = 0.
8.1.1. Steady viscous flow (Re = 41)

The background mesh consists of 20,869 nodes and 41,355 elements and it is partitioned into 16 sub-

domains for parallel computation, and the overlapping grid consists of 4380 nodes and 8494 elements

and is partitioned into 4 sub-domains, as shown in Fig. 9. The number of pseudo sub-iterations per time

step is set to 100, CFL is set to 3.5 and the non-dimensional physical time step is set at 0.5. The computa-

tional results obtained using the immersed object method are compared with the numerical results of Tai

and Zhao [17] and the experimental measurements of Dyke et al. [20]. The wake formed behind the cylinder

agrees well with both numerical and experimental solutions as depicted in Fig. 10, where the separation
point occurs at the same location. A comparison of the aspect ratio (separation bubble length, S over cyl-

inder diameter, d) with the experimental results obtained by Nishioka and Sato [21] is given. An aspect ratio

of around 2.3 is obtained using the immersed object method with an overlapping grid and 2.4 from the

experimental result as shown in Fig. 11. Fig. 12 shows the convergence history plot using the present meth-

od and the normalized residual is reduced to an order of 1 · 10�5.
8.1.2. Unsteady viscous flow (Re = 200)

The background mesh consists of 27,489 nodes and 54,595 elements and it is partitioned into 4 sub-
domains for parallel computation. The overlapping grid consists of 29,580 nodes and 58,558 elements

and it is also partitioned into 4 sub-domains, as shown in Fig. 13. In the background mesh, the wake region

is further refined in order to accurately capture the fine details of the vortex shedding phenomenon as
Fig. 9. Partitioned background and overlapping grids for stationary circular cylinder flow at Re = 41.

Fig. 10. Streamlines plot for flow over a stationary circular cylinder for (a) experimental measurements [17], (b) Tai and Zhao [14], (c)

background mesh and (d) overlapping grids.

Fig. 11. Length of seperation bubbles behind cylinder vs. Reynolds number [18].

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 165
shown in Fig. 13. The number of pseudo sub-iterations per time step is set to 200, CFL is set to 0.5 and the

non-dimensional physical time step is set to 0.09 for better temporal resolution. The flow is started from

stationary conditions and the simulation is run until periodic shedding of vortices occurred.

Fig. 12. Convergence history plot for flow over cylinder using immersed object method.

Fig. 13. Partitioned background and overlapping grids for circular cylinder flow at Re = 200.

166 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
Fig. 14 presents the computed lift and drag coefficients on the cylinder versus non-dimensional time. A

pronounced asymmetric wake begins to appear at non-dimensional time of 20 and the flow becomes com-

pletely periodic at a time instant of 55. The lift coefficient, Cl, drag coefficient, Cd, and Strouhal number, St,

obtained using the immersed object method are ±0.69, 1.33 ± 0.05 and 0.198, respectively, and they agree

well with other numerical and experimental results [22–24], all of which are presented in Table 2. Fig. 15

shows the contours of vorticity obtained by the immersed object method on both the background and over-
lapping grids. The figure shows that the vortices with opposite signs are shed from upper and lower surfaces

alternately, thus forming the Kármán vortex street.

8.2. Rotating square cylinder

The second test case considered is the viscous flow over a rotating square cylinder of unity at Re = 41.

The number of pseudo sub-iterations per time step is set to 200, CFL is set to 0.4 and the non-dimensional

physical time step is set to 0.02. An overlapping mesh of square shape is immersed into the background
mesh to define the physical boundary of the cylinder. The angle of rotation per time step for the cylinder

Fig. 14. Lift and drag coefficients versus time for flow over a stationary circular cylinder computed using the overlapping grid

(Re = 200).

Table 2

Lift coefficient, drag coefficient and Strouhal number for flow over a stationary cylinder (Re = 200)

Reference Cl Cd St

Present (immersed object method) ±0.69 1.33 ± 0.05 0.198

Liu et al. [19] ±0.69 1.31 ± 0.049 0.192

Roshko (Expt.) [20] – – 0.19

Wille (Expt.) [21] – 1.30 –

Fig. 15. Vorticity contours plot for background and overlapping grids (Re = 200).

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 167
is set to 0.2� or 3.5 · 10�3 radians. The square cylinder rotates counter-clockwise at an angular velocity of

0.175 rad/s for each time step. The flow field is started from rest with the square cylinder rotates at the set

angular velocity and the simulation is run until periodic shedding of vortices occurred. The background

168 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
mesh is the same mesh used in the first test case for unsteady viscous flow over a stationary circular cylin-

der. And in this computation the background mesh is partitioned into 8 sub-domains for parallel compu-

tation, whist the overlapping grid consists of 15,129 nodes and 29,658 elements and is partitioned into 4

sub-domains, as shown in Fig. 16.

The computed lift and drag coefficients on the rotating square cylinder versus non-dimensional time are
shown in Fig. 17. The period for the periodic motion is 36 and thus it takes a non-dimensional time of 36

for the square cylinder to complete one cycle. From Fig. 17, it can be seen that there are two peaks and two

troughs within a cycle, corresponding to the four corners of the square. Fig. 18 shows the vorticity contour

plots for the rotating square cylinder at different non-dimensional physical time and angle of rotation,

which outlines the vortex shedding phenomenon. These phenomena are different from the Kármán vortex

street phenomenon, because periodic shedding of vortices occurs at very low Reynolds numbers.
Fig. 16. Partitioned background and overlapping grids for rotating square cylinder flow.

Fig. 17. Lift and drag coefficients versus time for flow over a rotating square cylinder computed using the overlapping grid.

Fig. 18. Vorticity plots for rotating square cylinder at different time and angle of rotation.

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 169
8.3. Rotating and translating circular disk

The third test case considered is viscous flow over a rotating and translating circular disk of diameter
d = 0.25 at Re = 25, based on kinematics viscosity m = 1 · 0�2. The disk moves within a cavity of

x = �0.35 to 0.9 and y = �0.5 to 0.5 and the centre of the disk translates along a prescribed trajectory

as follows,
Fig. 19. Moving disk along a prescribed trajectory.

Fig. 20. Streamlines and velocities contour plots for the one period of the moving disk.

170 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172

C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172 171
xðtÞ ¼ 0:25 1� cos
pt
2

� �� �
; yðtÞ ¼ �0:1 sin p 1� cos

pt
2

� �� �� �
:

The computational domain, prescribed trajectory and several different positions of the disk are shown in

Fig. 19. The four sides of the computational domain are solid wall with zero velocity. While its centre is
moving along the trajectory, the disk is rotating counter-clockwise at an angular velocity of and the fluid

velocity within the disk is set to an object velocity, Vo, of p. The mesh shown in Fig. 19 consists of 27,323

nodes and 54,284 elements and is partitioned into 8 sub-domains for parallel computation. The number of

pseudo sub-iterations per time step is set to 300, CFL is set to 1.5 and the non-dimensional physical time

step is set to 0.01.

The flow is started with the fluid at rest and the disk rotates at an angular velocity of p and the simu-

lation is run until the flow becomes periodic. The period of the periodic motion is 4. Fig. 20 shows the con-

tour plots for both u and v velocities and streamline plots at different time instances between t = 4.0 and 8.0.
From the figure, it can be seen that the rotating disk causes the flow field within the confined domain to

rotate in counter-clockwise direction. At the same position of the rotating disk, the flow phenomenon is

completely different at different time instances. For example, flow patterns at t = 5.5 and 6.5 are different

from each other. This is mainly due to the rotating disk at t = 5.5 is translating in the forward direction,

whereas at t = 6.5, it is translating back to the initial position at (0,0).
9. Conclusions

In this paper, a novel immersed object method has been developed and implemented in a two-dimen-

sional parallel unstructured-mesh finite volume Navier–Stokes solver for the study of unsteady incompress-

ible viscous flows around moving rigid objects. The advantage of this method lies in the fact that it does not

require object–mesh intersection calculation and interpolation/extrapolation to impose boundary condition

directly onto the object surfaces. The inclusion of overlapping grids in the immersed moving object method

improves the accuracy and robustness of the method for high-Reynolds-number flows. Numerical results

obtained with the immersed moving object method are found to agree well with published numerical solu-
tions and experimental measurements. It is found that the method is capable of calculating complex flows

with arbitrarily moving objects efficiently and accurately.
Acknowledgement

This research work was supported by a research scholarship provided by Nanyang Technological Uni-

versity (NTU) and Sun Microsystems Pte. Ltd. The provision of computing facilities by Nanyang Centre
for Supercomputing and Visualisation (NCSV), NTU is acknowledged.
References

[1] C.S. Peskin, Flow patterns around heart valves: a numerical method, Journal of Computational Physics 10 (1972) 252–271.

[2] A.L.F. Lima, E. Silva, A. Silveira-Neto, J.J.R. Damasceno, Numerical simulation of two-dimensional flows over a circular

cylinder using the immersed boundary method, Journal of Computational Physics 189 (2003) 351–370.

[3] J.M. Stockie, S.I. Green, Simulating the motion of flexible pulp fibres using the immersed boundary method, Journal of

Computational Physics 147 (1998) 147–165.

[4] K.M. Arthurs, L.C. Moore, C.S. Peskin, E.B. Pitman, H.E. Layton, Modeling arteriolar flow and mass transport using the

immersed boundary method, Journal of Computational Physics 147 (1998) 402–440.

172 C.H. Tai et al. / Journal of Computational Physics 207 (2005) 151–172
[5] D. Goldstein, R. Handler, L. Sirovich, Modeling a no-slip flow boundary with an external force field, Journal of Computational

Physics 105 (1993) 354–366.

[6] D. Goldstein, R. Handler, L. Sirovich, Direct numerical simulation of turbulent flow over a modelled riblet covered surface,

Journal of Fluid Mechanics 302 (1995) 333–376.

[7] E.M. Saiki, S. Biringen, Spatial numerical simulation of boundary layer transition: effects of a spherical particle, Journal of Fluid

Mechanics 345 (1997) 133–164.

[8] Y.H. Tseng, J.H. Ferziger, A ghost-cell immersed boundary method for flow in complex geometry, Journal of Computational

Physics 192 (2003) 593–623.

[9] R.P. Fedkiw, T. Aslam, B. Merriman, S. Osher, A Non-oscillatory Eulerian approach to interfaces in multimaterial flows (the

Ghost Fluid Method), Journal of Computational Physics 152 (1999) 457–492.

[10] R.P. Fedkiw, Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the Ghost Fluid method, Journal of

Computational Physics 175 (2002) 200–224.

[11] R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for dirichlet problems and applications, Computer Methods in

Applied Mechanics and Engineering 111 (1994) 283–303.

[12] R. Glowinski, T.W. Pan, J. Periaux, A fictitious domain method for external incompressible viscous flow modeled by Navier–

Stokes equations, Computer Methods in Applied Mechanics and Engineering 112 (1994) 133–148.

[13] C. Kiris, D. Kwak, S. Rogers, I.-D. Chang, Computational approach for probing the flow through artificial heart devices, Journal

of Biomechanical Engineering 119 (1997) 452–460.

[14] J. Mohd-Yusof, Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries, CTR Annual

Research Briefs, NASA Ames/Standford University, 1997.

[15] Y. Zhao, C.H. Tai, Higher-order characteristics based methods for incompressible flow computation on unstructured grids, AIAA

Journal 39 (7) (2001) 1280–1287.

[16] H. Lou, J.D. Baum, R. Löhner, An accurate fast, matrix-free implicit method for computing unsteady flows on unstructured

grids, Computer & Fluids 30 (2001) 137–159.

[17] C.H. Tai, Y. Zhao, Parallel unsteady incompressible viscous flow computations using an unstructured multigrid method, Journal

of Computational Physics 192 (1) (2003) 277–311.

[18] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel Programming with the Message-passing Interface, The MIT Press,

Cambridge, Massachusetts, 1994.

[19] G. Karypis, V. Kumar, Metis: A software package for partitioning unstructured graphs, partitioning meshes, computing fill-

reducing orderings of sparse matrices, version 4.0, University of Minnesota, Department of Computer Science, 1998.

[20] V. Dyke, D. Milton, An Album of Fluid Motion, Parabolic Press, Stanford, CA, USA, 1982.

[21] M. Nishioka, H. Sato, Mechanism of determination of the shedding frequency of vortices behind a cylinder at low Reynolds

numbers, Journal of Fluid Mechanics 89 (1978) 49–60.

[22] C. Liu, X. Zheng, C.H. Sung, Preconditioned multigrid methods for unsteady incompressible flows, Journal of Computational

Physics 139 (1998) 35–57.

[23] A. Roshko, On the development of turbulent wakes from vortex streets, NACA Report, 1191, 1954.

[24] R. Wille, Karman vortex streets, Advances in Applied Mechanics, vol. 6, Academic, New York, 1960, pp. 273–287.

	Parallel computation of unsteady incompressible viscous flows around moving rigid bodies using an immersed object method with overlapping grids
	Introduction
	Mathematical formulation
	Numerical methods
	Parallel implementation
	The immersed object method
	Overlapping grid
	Initial and boundary conditions
	Computational results
	Viscous flow over a stationary circular cylinder
	Steady viscous flow (Re=41)
	Unsteady viscous flow (Re=200)

	Rotating square cylinder
	Rotating and translating circular disk

	Conclusions
	Acknowledgement
	References

